Machine-Learning Based Encryption via Learned
Character Permutations

Samuel Cavazos

August 24, 2025

Abstract

A cipher is covered early on in elementary cryptography courses because it provides
intuition about more complicated encryption methods. In this paper, we implement
a random substitution cipher in Python and train two neural networks to learn the
mapping. The models, implemented in PyTorch, serve as an encoder (plaintext —
ciphertext) and a decoder (ciphertext — plaintext). Together, they demonstrate how
machine learning can memorize and reproduce encryption and decryption operations
for a fixed, randomly sampled key (permutation) over a finite character vocabulary.
While we begin with this simple cipher, the flexibility of neural models enables more
sophisticated approaches—for example, using learnable embeddings to represent sym-
bols as vectors and composing them with richer architectures which allows for the
possibility of more complicated and secure encryption methods.

1 Problem Setup and Notation

Let V denote a finite character vocabulary with |V| = n. We index symbols by integers
{0,1,...,n—1} and write 7 € S,, for a key sampled uniformly at random: 7 : {0,...,n—1} —
{0,...,n—1} is a permutation. The encryption function is E. (i) = m(i) and the decryption
function is D.(j) = 7~ 1(5).

We cast learning F, and D, as two multi-class classification problems over n classes. The
supervised pairs are

Dene = {(z,7(x)) : 2 €{0,...,n—1}}, Daec = {(m(z),z) : 2 €{0,...,n—1}}.

One-hot and embeddings. Let ¢; € R™ denote the i-th standard basis vector. We will
use a learnable embedding £ € R™*? that maps index i to Ee; € R? (equivalently, the i-th
row of E).

2 Model Architecture

For each direction we use the same per-character classifier. Given input index z € {0,...,n—
1}, the model computes

Embedding: h = ETe, € R, (1)
Logits: z=Wh+beR", 2)
Class probs: p(y|z) = softmax(z), L(Zy) (3)

S s exp(zr)’

with parameters £ € R™ W € R™*¢ b € R™. The prediction is § = arg max, p(y | z).

Expressivity (exact realization).

Proposition 1 (Exact realizability via rank factorization). Let V' be a vocabulary with
V| =n and let 7 € S, be a permutation. Consider the model x +— softmax(W E e, + b)
with £ € R™4 W € R4 b e R™. Ifd > n, then there exist parameters (E, W, b) such that

argmax softmax(WE e, +b), = w(z) forallze€{0,...,n—1}.
Yy

Constructive proof. Let P € R™™ be the permutation matrix for = (i.e., (Pr),, = 1 iff
y = m(x)). Pick E =[I, 0] € R™? (so ET = [I,,;0]), W = [P, 0] € R™¢ and b= 0. Then
for any input index =z,

I

h=FE'e, = {0

} er = €z, z=Wh= [Pﬂ O] €r = Prey = €.

Hence softmax(z) is maximized uniquely at class 7(x), as required. O

Remark 1 (Minimality for exact realization). If one requires the ezact linear realization
WET = P, (so that z = WETe, equals er(,) before softmax), then necessarily d > n.
Indeed, rank(P,) = n while rank(WET) < min{rank(WW),rank(E)} < d. Thus d > n is
both sufficient (by the construction above) and necessary for exact equality WET = P,.
This is an instance of the rank (full-rank) factorization theoremE]

Remark 2 (On the weaker argmax requirement). Our practical objective only requires zx(;) >
2y for all y # 7(x), not z = er(y). Therefore, in practice one often achieves perfect classifica-
tion with d < n; the construction and Remark [1| address ezact linear realization.

This guarantees that a shallow embedding+linear model can perfectly implement any
substitution cipher when d > n; in practice we use d < n and still find the mapping by
optimization.

!See, e.g., R. A. Horn and C. R. Johnson, Matriz Analysis (2nd ed.), Cambridge Univ. Press, or
G. H. Golub and C. F. Van Loan, Matriz Computations (4th ed.), Johns Hopkins Univ. Press.

3 Learning Objective

For either direction (encoder or decoder) with dataset D = {(z;,y;)}Y,, the negative log-
likelihood (cross-entropy) is

n—1
(2100 — log > e=), (4)
k=0

where z; = WETe,, + b are the logits for example ¢ and § = (E,W,b). We optimize with
Adam. Accuracy is % > 1H{argmaxy 2, = y;}.

1 < 1
5(9) = _N;bgpe(yi|xi) = _N

i=1

Computational notes. Per example, the forward pass costs O(dn) to produce logits
(matrix-vector multiply Wh), and the softmax normalization costs O(n). Thus the softmax
dimension n = |V| dominates compute and memory, motivating an ASCII-sized vocabulary
in our initial experiments.

4 Implementation (Minimal, Self-Contained)

We present compact Python listings that realize the mathematics.

4.1 Vocabulary

We fix V by concatenating ASCII letters, digits, punctuation, and whitespace, and provide
index<>character utilities.

import string, torch

class Characters:
def __init__(self):
self.characters = (
string.ascii_letters +
string.digits +
string.punctuation +
" \t\n\r\x0b\x0c"
)
self .num_characters = len(self.characters)
def index(self, text: str) -> torch.Tensor:
return torch.tensor([self.characters.index(c) for c in text], dtype=torch.long)
def read(self, indices: torch.Tensor) -> str:
return "".join(self.characters[int(i)] for i in indices)

4.2 Random substitution supervision

We sample 7 and build paired supervision for E, and D,.

Dene = {(z,7(2))}, Daec = {(7(x),2)}.

import random, torch

class Cipher:
def __init__(self):

self.char = Characters()
n = self.char.num_characters
self.pi = list(range(n)); random.shuffle(self.pi)
patred tensors: (src, dst)
self.enc_pairs = torch.tensor([range(n), self.pi], dtype=torch.long).T
self.dec_pairs = torch.tensor([self.pi, range(n)], dtype=torch.long).T

cipher = Cipher()

4.3 Architecture (Embedding — Linear)
This implements h = E'e,, 2 = Wh+ b, p = softmax(z).

import torch.nn as nn

class Architecture(nn.Module):
def __init__(self, num_chars: int, emb_dim: int = 64):

super () .__init__Q)
self .emb = nn.Embedding(num_chars, emb_dim) # rows = E
self.out = nn.Linear(emb_dim, num_chars) # W, b
def forward(self, x): # x: [B]
return self.out(self.emb(x)) # logits: [B, [V/]

4.4 Training loop (encoder and decoder)

Two instances of the same architecture are trained on the two directions.

import torch, torch.utils.data as data

V = cipher.char.num_characters

encoder, decoder = Architecture(V), Architecture(V)
criterion = nn.CrossEntropyLoss()

enc_opt = torch.optim.Adam(encoder.parameters(), lr=2e-3)
dec_opt = torch.optim.Adam(decoder.parameters(), lr=2e-3)

datasets of (z, y) indices

enc_ds = data.TensorDataset(cipher.enc_pairs[:,0], cipher.enc_pairs[:,1])
dec_ds = data.TensorDataset(cipher.dec_pairs[:,0], cipher.dec_pairs[:,1])
enc_loader = data.Dataloader(enc_ds, batch_size=32, shuffle=True)
dec_loader = data.Dataloader(dec_ds, batch_size=32, shuffle=True)

@torch.no_grad__()
def eval_mapper(model, pairs):
x, y = pairs[:,0], pairs[:,1]
logits = model(x)
loss = criterion(logits, y).item()
acc = (logits.argmax(-1) == y).float() .mean().item()

4

return loss, acc

for epoch in range(l, 501):

encoder step

encoder.train()

for x, y in enc_loader:
enc_opt.zero_grad(set_to_none=True)
loss = criterion(encoder(x), y)
loss.backward(); enc_opt.step()

decoder step

decoder.train()

for x, y in dec_loader:
dec_opt.zero_grad(set_to_none=True)
loss = criterion(decoder(x), y)
loss.backward(); dec_opt.step()

evaluation on all symbols

enc_loss, enc_acc = eval_mapper(encoder, cipher.enc_pairs)

dec_loss, dec_acc = eval_mapper(decoder, cipher.dec_pairs)

if enc_acc == 1.0 and dec_acc == 1.0:
torch.save(encoder.state_dict(), "encoder.pth")
torch.save(decoder.state_dict(), "decoder.pth")
print("Training complete."); break

5 Results

On an ASCII-sized vocabulary, both models rapidly achieve 100% accuracy on their respec-
tive mappings, demonstrating that the embedding+linear architecture can memorize and
invert a random permutation of V.

Experimental Protocol for Figures

To quantify learning speed and variability, we run a sweep of 7" independent trainings (e.g.,
T = 1000), each with a fresh random permutation 7w and fixed hyperparameters (batch size
32, embedding dimension 64, learning rate 2 x 1073, maximum epochs 300). For each run
we log per-epoch metrics and define the epochs-to-convergence

7 = min{e € N | enc_acc, > 1.0 A dec_acc, > 1.0}.

Aggregate training curves compute, for each epoch e, the median and interquartile range
(IQR, 25-75th percentile) across all trials that reached epoch e. Wall-clock time is measured
per run with a simple start/stop timer.

6 Discussion

The experiment isolates the mathematical core of learned substitution: logits z = Wh+0b over
n classes, a cross-entropy objective, and a small embedding dimension d. The proposition

Accuracy (Encoder vs Decoder)

0.8

0.6

Accuracy

0.4+

0.2 Encoder IQR
Decoder IQR

—— Encoder median

—— Decoder median

0.0+

Epoch
Figure 1: Accuracy (median & IQR).
Encoder (magenta) vs. decoder (purple).
Shaded bands indicate IQR across trials;
solid curves are medians. The two curves
nearly overlap, reflecting symmetry of the
forward and inverse mappings.

Train Loss (Encoder vs Decoder)

Encoder IQR

Decoder IQR
—— Encoder median
4 —— Decoder median

Cross-Entropy Loss

6 5‘ 1‘0 1‘5 2‘0 2‘5 3b 3‘5 4‘0
Epoch
Figure 2: Train loss (median & IQR).
Cross-entropy loss for encoder (magenta)
and decoder (purple). Loss decays smoothly
to near-zero as the permutation is memo-
rized.

shows exact realizability when d > n; empirically, d < n suffices in practice for this finite
task. The aggregated curves in Figures show fast, stable convergence, while Figure
summarizes the distribution of required epochs and wall-clock time across random keys.

Security note (single mention).
and is not intended as a cryptosystem.

7 Toward Richer Settings

Two directions naturally follow:

This study examines mechanics of learned mappings

e Scaling |V|. Moving beyond ASCII toward UTF encodings increases the softmax
dimension and compute; subword vocabularies or hierarchical classifiers may mitigate

the O(n) normalization cost.

e Sequence conditioning.

Replace per-character substitution with key-conditioned

sequence models; analyze behavior under chosen-plaintext/ciphertext regimes and in-

vestigate integrity constraints.

8 Code and Installation

The full source code for this project is available at: |github.com/Alshivals-Data-Service/alshicrypt.

https://github.com/Alshivals-Data-Service/alshicrypt

Convergence epochs over 1000/1000 runs

Wall-clock time per run over 1000 trials

100

80 4

Count

60 -

Count

20 4

20 25 30 35

Epochs to hit target accuracy (encoder & decoder) o
0.25 0.30 0.35 0.40 0.45

(a) Epochs to convergence. Histogram of 7 eI ME per i (seconds)
across runs. Mass concentrates in the low tens (b) Wall-clock time per run. Distribution of
of epochs, consistent with rapid memorization of end-to-end training time (seconds) for one en-

a finite permutation. coder/decoder pair on the given hardware.

Figure 3: Convergence behavior over many independent trainings. Left: how many
epochs until both models reach 100% accuracy. Right: elapsed time per run.

Install (from GitHub). Requires Python 3.9+ and PyTorch 2.0+.

pip install "git+https://github.com/Alshivals-Data-Service/alshicrypt.git"
(If PyTorch is missing, tinstall a wheel appropriate for your system first:
https://pytorch.org/get-started/locally/)

Quick start (train, save, load, use).

import alshicrypt

Train & save to stable folders (each call samples a new random key)
cryptl = alshicrypt.generate(epochs=200, outdir="artifacts/crypt-hello")
crypt2 = alshicrypt.generate(epochs=200, outdir="artifacts/crypt-world")

Load them later (or in a new process)
cryptl = alshicrypt.load("artifacts/crypt-hello")
crypt2 = alshicrypt.load("artifacts/crypt-world")

msg = "Hello, World!"
enc = cryptl.encode(msg)
dec = cryptl.decode(enc)

print("crypti")

print (" ")
print(£"Original: {msg}")

print (f"Encoded: {enc}")

print (f"Decoded: {dec}\n")

assert dec == msg

enc2 = crypt2.encode(msg)

dec2 = crypt2.decode(enc2)

print ("crypt2")

print (" ")
print (£"Original: {msg}")

print (f"Encoded: {enc2}")

print (f"Decoded: {dec2}")

assert dec2 == msg

crypti

Original: Hello, World!
Encoded: D<~~rJB*r) W]
Decoded: Hello, World!

crypt2

Original: Hello, World!
Encoded: d!'VVm\xOb Nm4V|-
Decoded: Hello, World!

Each trained pair is stored under the specified artifacts/ directory (e.g., artifacts/crypt-hello).
The encode method applies the learned plaintext—-ciphertext mapping; decode applies the
inverse mapping. Characters outside the training vocabulary are passed through unchanged.

	Problem Setup and Notation
	Model Architecture
	Learning Objective
	Implementation (Minimal, Self-Contained)
	Vocabulary
	Random substitution supervision
	Architecture (Embedding Linear)
	Training loop (encoder and decoder)

	Results
	Discussion
	Toward Richer Settings
	Code and Installation

